Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 11: 123, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32184759

RESUMO

Dr. Burk Dehority was an international expert on the classification and monoculture of ruminal ciliated protozoa. We have summarized many of the advancements in knowledge from his work but also in his scientific way of thinking about interactions of ruminal ciliates with the entire rumen microbial community and animal host. As a dedication to his legacy, an electronic library of high-resolution images and video footage catalogs numerous species and techniques involved in taxonomy, isolation, culture, and ecological assessment of ruminal ciliate species and communities. Considerable promise remains to adapt these landmark approaches to harness eukaryotic cell signaling technology with genomics and transcriptomics to assess cellular mechanisms regulating growth and responsiveness to ruminal environmental conditions. These technologies can be adapted to study how protozoa interact (both antagonism and mutualism) within the entire ruminal microbiota. Thus, advancements and limitations in approaches used are highlighted such that future research questions can be posed to study rumen protozoal contribution to ruminant nutrition and productivity.

2.
BMC Genomics ; 20(1): 1008, 2019 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-31864285

RESUMO

BACKGROUND: Rumen ciliates play important roles in rumen function by digesting and fermenting feed and shaping the rumen microbiome. However, they remain poorly understood due to the lack of definitive direct evidence without influence by prokaryotes (including symbionts) in co-cultures or the rumen. In this study, we used RNA-Seq to characterize the transcriptome of Entodinium caudatum, the most predominant and representative rumen ciliate species. RESULTS: Of a large number of transcripts, > 12,000 were annotated to the curated genes in the NR, UniProt, and GO databases. Numerous CAZymes (including lysozyme and chitinase) and peptidases were represented in the transcriptome. This study revealed the ability of E. caudatum to depolymerize starch, hemicellulose, pectin, and the polysaccharides of the bacterial and fungal cell wall, and to degrade proteins. Many signaling pathways, including the ones that have been shown to function in E. caudatum, were represented by many transcripts. The transcriptome also revealed the expression of the genes involved in symbiosis, detoxification of reactive oxygen species, and the electron-transport chain. Overall, the transcriptomic evidence is consistent with some of the previous premises about E. caudatum. However, the identification of specific genes, such as those encoding lysozyme, peptidases, and other enzymes unique to rumen ciliates might be targeted to develop specific and effective inhibitors to improve nitrogen utilization efficiency by controlling the activity and growth of rumen ciliates. The transcriptomic data will also help the assembly and annotation in future genomic sequencing of E. caudatum. CONCLUSION: As the first transcriptome of a single species of rumen ciliates ever sequenced, it provides direct evidence for the substrate spectrum, fermentation pathways, ability to respond to various biotic and abiotic stimuli, and other physiological and ecological features of E. caudatum. The presence and expression of the genes involved in the lysis and degradation of microbial cells highlight the dependence of E. caudatum on engulfment of other rumen microbes for its survival and growth. These genes may be explored in future research to develop targeted control of Entodinium species in the rumen. The transcriptome can also facilitate future genomic studies of E. caudatum and other related rumen ciliates.


Assuntos
Alveolados/genética , Alveolados/metabolismo , Perfilação da Expressão Gênica , Alveolados/citologia , Alveolados/fisiologia , Animais , Metabolismo dos Carboidratos/genética , Espaço Intracelular/metabolismo , Fagocitose/genética , RNA Mensageiro/genética , RNA-Seq , Transdução de Sinais/genética , Simbiose/genética
3.
ISME J ; 11(3): 691-703, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27959345

RESUMO

Ruminants have co-evolved with their gastrointestinal microbial communities that digest plant materials to provide energy for the host. Some arctic and boreal ruminants have already shown to be vulnerable to dietary shifts caused by changing climate, yet we know little about the metabolic capacity of the ruminant microbiome in these animals. Here, we use meta-omics approaches to sample rumen fluid microbial communities from Alaskan moose foraging along a seasonal lignocellulose gradient. Winter diets with increased hemicellulose and lignin strongly enriched for BS11, a Bacteroidetes family lacking cultivated or genomically sampled representatives. We show that BS11 are cosmopolitan host-associated bacteria prevalent in gastrointestinal tracts of ruminants and other mammals. Metagenomic reconstruction yielded the first four BS11 genomes; phylogenetically resolving two genera within this previously taxonomically undefined family. Genome-enabled metabolic analyses uncovered multiple pathways for fermenting hemicellulose monomeric sugars to short-chain fatty acids (SCFA), metabolites vital for ruminant energy. Active hemicellulosic sugar fermentation and SCFA production was validated by shotgun proteomics and rumen metabolites, illuminating the role BS11 have in carbon transformations within the rumen. Our results also highlight the currently unknown metabolic potential residing in the rumen that may be vital for sustaining host energy in response to a changing vegetative environment.


Assuntos
Bacteroidetes/metabolismo , Cervos/microbiologia , Microbioma Gastrointestinal , Polissacarídeos/metabolismo , Rúmen/microbiologia , Animais , Regiões Árticas , Bactérias/classificação , Bacteroidetes/classificação , Mudança Climática , Cervos/classificação , Digestão , Ácidos Graxos Voláteis/metabolismo , Fermentação , Lignina/metabolismo , Metagenômica/métodos , Filogenia , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...